

2

Design and Implementation of Genetic Algorithms for

Solving Problems in the Biomedical Sciences

Running title: "Genetic Algorithms for Biomedicine"

Michael Levin

Genetics Dept.

Harvard Medical School

200 Longwood Ave.

Boston, MA 02115

3

Abstract

 Many problems in the biomedical sciences can be re-formulated as searches in

some appropriate space. Genetic Algorithms (GAs) are a domain-independent

form of search which has several characteristics enabling it to effectively search

difficult spaces. Thus, the evolutionarily-inspired GA is often able to provide

good answers to questions with very difficult search spaces. This paper presents a

tutorial on when to use, and when not to use GA approaches, how to model prob-

lems as searches, how to define appropriate spaces, solution representations, and

fitness functions, and how to implement and trouble-shoot a GA program which

will efficiently locate solutions to the problem. A list of resources such as public-

domain (freely-available) GA software and various internet-based GA advice

groups is also provided.

4

Introduction

 All interesting questions, including those of interest to the biomedical commu-

nity, can be reformulated as searches in some appropriate space. For example,

when one wants to design a molecule that binds some particular protein, one is

searching for some element (or elements, or even subspace) in the space of all

possible molecules. When one wants to optimally allocate hospital resources

among some group of patients, one is searching for a satisfactory allocation strat-

egy in the space of all possible strategies. When one is trying to develop a theory

or a model that explains some set of phenomena, one is searching the space of all

possible theories for the simplest one which fits the given data.

 Any search task has several components. One needs to define a search space

(the abstract form or structure of all possible entities that are being searched

through), and an evaluation function (a precise way to evaluate any member of

this search space and decide on its "quality" - how good or useful a solution it is).

In the above examples, and in general, the space that needs to be searched is im-

mense, and often of unknown dimentionality (for example, how many independ-

ent parameters are sufficient to enumerate all possible theories?). Several methods

exist for effectively searching these kinds of spaces. Scientists commonly use

heuristics and creative insight to achieve this. This process, however, is highly

non-algorithmic, and thus difficult to simulate on the computer.

 Because of the search space size, exhaustive searches (ones which cause every

possible solution to be examined) are often not feasible, no matter what comput-

ing resources one has1. And, while several common heuristic methods exist, they

are often ineffective on deceptive or difficult spaces. This refers to spaces with

strong nonlinearities, such that elements that are close together in the space have

widely differing qualities. For example, when a molecule that is pretty good at

catalyzing some biochemical activity, there will often be almost identical (and

1 While not at all obvious, this follows from certain results in the theory of computation and physics.

5

thus in the search space, neighboring) molecules that are very poor at this task be-

cause of single residues which cause steric hindrances etc. Such spaces are decep-

tive because one point in the space doesn’t always give much information about

its neighbors. This can cause gradient methods to become trapped in local

maxima (regions of good solutions which are far away from sets of much better

solutions and thus form dead-ends for the search).

 Fortunately, there is another method which is often very useful at searching

such spaces. Genetic Algorithms (GAs [1]) and their relatives in the wide field of

Evolutionary Computation can endow a search with the power of evolution. The

basic idea, analogously with biological evolution, is that an initially random set of

candidate solutions to some problem is evaluated. The top few percent are kept,

while the rest are discarded. These top few are recombined and randomly mutated

to form the next generation’s set. This process is iterated until a satisfactory solu-

tion is found. Note that this procedure is completely algorithmical (and thus easily

given to computer implementations), and requires no domain-specific knowledge

or user intervention - the search proceeds using only the information inherent in

the search space itself. Likewise, the algorithm is domain-independent, and can be

adapted to almost any task.

 At this point one is naturally incredulous. How is a random set of points,

driven by what looks like a randomized hill-climbing search algorithm, going to

be improved in a difficult and immense search space? There are two answers to

this objection. The empirical answer is that it seems to work, and very effectively

indeed. References 3-8 give many examples where this type of algorithm has

worked on various difficult tasks.

 The theoretical answer is motivated by biological evolution. One is hard-

pressed to come up with a more difficult search space than that of biological phe-

notypes. Due to genetic pleitropy, and the fantastically complex interactions that

go on during embryonic development, it hardly seems plausible that random mu-

6

tation and differential reproduction are sufficient to account for the myriad of

marvelously-adapted organisms we observe today. At all levels, from biochemi-

cals to organs and whole organisms, each system seems so finely tuned that any

random alteration will ruin its function completely (these matters are dealt with in

[2]). Yet evolution obviously works, and the basic algorithm outlined above is

seen to be sufficient to successfully traverse an extremely difficult search space2.

By pursuing a population of solutions simultaneously, letting useful features

propagate through selection, and recombining parts of solutions, GAs are often

able to effectively search complex and many-dimensional search spaces and avoid

being trapped on local maxima.

 GAs however, are not a panacea. It is important to decide whether a GA ap-

proach is right for a given problem. In general, GAs should be used when:

• the space of all possible solutions is very large;

• the solution space is high-dimensional (i.e., a solution to the problem can con-

sist of a large number of parameters, each of which can be set independently of

the others, thus providing a combinatorial explosion of possibilities);

• the space is deceptive (i.e., solutions which are very similar in form and con-

tent are not guaranteed to have similar quality as solutions);

• the problem contains non-linearities and constraints;

• there is no known analytical way to solve the problem;

 GAs should not be used when:

• a closed-form or analytic solution is possible (for example, when it is possible

to write down a set of equations which capture the constraints of your problem,

and to solve them explicitly);

2
�

One of the main reasons why GAs are so important, besides their usefulness in solving various problems, is that
they allow us to adjust our intuitions as to what is and is not possible for the process of evolution.

7

• when an exhaustive search is practical (for a small section of seemingly-

difficult problems, a careful choice of hardware and fitness function may make

it possible to try out every solution in the time it would take to design, code,

and run a genetic algorithm;

• some other paradigm (such as an Artificial Neural Network, a classical AI ex-

pert system, etc.) is more appropriate;

• when repeatability is required (due to its stochastic nature, GAs are by defini-

tion not guaranteed to find the same solution in any two runs);

• real-time solutions are needed (GAs, like biological evolution, require time-

scales which are often much greater than direct methods).

Implementation

 Supposing that one has decided to use a GA approach, several issues need to

be decided upon. The choice of hardware is often constrained to what is already

available; however, almost all GA approaches require at least a fast workstation

(Unix or VMS) to be useful. In certain extreme cases, a massively parallel archi-

tecture is needed (access to such machines can be obtained at several national su-

percomputing centers, such as the PSC). Memory, disk space, and graphics sys-

tem requirements are generally dictated by the specific problem at hand. One

generally wants the fastest CPU available, and often a separate FPU (floating

point processor) can speed things up significantly. The GA itself does not require

any extra disk space, nor much memory; a graphics system is beneficial (for plot-

ting the course of the evolution) but not required. Any common language (BA-

SIC, C, C++, Pascal, Fortran, LISP, etc.) may be used, but the nature of the spe-

cific task may make one more suitable than another.

 The basic GA algorithm is diagrammed in figure 1; it faithfully represents the

basic idea behind "Darwinian" evolution (except for side-stepping the question of

8

the origin of the first unit capable of self-reproduction). In order to implement

this algorithm, several things need to be defined:

1) a representation: one needs to decide on a structure3 which is able to represent

every possible solution to the desired problem. Some examples: if one wants to fit

a 4-th degree polynomial to some points of data, one can represent each candidate

solution as a vector of 4 floating point numbers, where each number is a coeffi-

cient of the polynomial; if one wants to fit a curve to points of data but does not

know a priori the form of the curve, the representation can be a regular expres-

sion (such as "x * (3 + x) - sin(x)") using a number of functions, variables, and

constants; if one wants to find an optimal classification strategy, the representa-

tion can be a tree, whose nodes are questions, and whose branches represent the

possible answers to those questions, which then lead to more specific questions; if

one wants to be able to do visual recognition of malignant cell types, the represen-

tation can be a matrix of numbers which define an artificial neural net which can

perform the recognition; etc. A single instance of such a representation is called a

"member" of the population.

 The choice of representation is important; it must not be too narrow (or good

solutions will be missed), nor too wide (or else time will be wasted in searching

inappropriate parts of the state space). The landscape should be well correlated: as

much as possible, representations which are close in content must represent solu-

tions whose quality or fitness is also close. For example, if one was searching for

an animal which matched certain characteristics, it would be a poor choice to ar-

range the data in order of alphabetical name. This is because animals whose

names are alphabetically close (worms and wombats) will not tend to have similar

characteristics. A much better choice in this case would be a tree-like arrangement

which preserves phylogenetic relationships, because then close points on this tree

would represent animals which are likely to be similar. This makes for a non-

3
�

Some common choices include artificial neural networks, finite state automata, decision trees, regular expres-
sions, logic truth tables, graphs, etc.

9

deceptive landscape, and maximizes the effectiveness of a GA approach. Finally,

the choice of representation may suggest one computer language over another.

For example, LISP is usually preferred when one needs to deal with lists and vari-

able length trees, while C is simpler for fixed-shape arrays etc.

2) a fitness function: the next crucial ingredient is to define a fitness function.

This is a function which takes a single member as input, and returns a real number

between 0.0 and 1.0. This function must evaluate the member it is given, decide

how good a solution it is for the problem at hand, and return a single number ex-

pressing this result; numbers closer to 1.0 represent better solutions. Thus, when

a fitness function is defined, such that it is possible to perform an unambiguous

ordering of members with respect to it, the GA search performs an optimization of

that function.

 Some examples: if one is searching for an equation to fit some data, the fitness

function should return the quality of that fit (perhaps measured by the least-

squares method); if one is searching for a classification strategy, the fitness func-

tion should run a bunch of test cases through the strategy it is given, and arrive at

a score expressing how good a job this strategy did; if one is searching for a pat-

tern recognizer, the fitness function should submit some number of positive and

negative instances to the recognizer determined by the genotype, and score its

performance; etc.

 Clearly, this function is application-specific. Usually, this function (which is

called repeatedly to evaluate every member of the population, in each generation)

is where most of the compute-time is spent, so most optimization effort should be

directed at it. The fitness function should be scaled, so that 1.0 represents a per-

fect solution, and so that it is as linear as possible (i.e., avoid functions which give

all-or-nothing grades; partial credit works best).

3) mutation and recombination operators: for evolution to take place, one must

have a means for producing new genomes. There are two types of operators: mu-

10

tation and crossover (although sometimes, more exotic operators such as inver-

sion, duplication, deletion, etc. can be used). Mutation randomly alters some as-

pect of a member, while cross-over performs an exchange of genetic material (of

the member’s information) between two members. For example: if a representa-

tion is a vector of numbers, mutation can simply change one or more of those

numbers by some small offset, while crossover swaps one or more numbers be-

tween two individuals; if a representation is a decision or parse tree, mutation can

replace nodes or cut or add branches, while crossover can swap branches at de-

fined points; etc.

 An important issue in designing operators is what to do about the fact that

members can be produced which are illegal, and cannot be evaluated. For exam-

ple, the expression "3 ÷ x" can be mutated to "3 ÷ 0", which cannot be evaluated.

Four strategies are possible for dealing with this:

• protected operators - define special functions (in this case, a protected divide

function) which watch for illegal inputs, and return pre-defined values (in this

case, 0 or 3 are both reasonable choices);

• "hand of God" - one can have a special routine that scans for and removes ille-

gal individuals prior to evaluation;

• "dog-eat-dog" - one can simply assign a fitness of 0.0 to illegal members, with-

out evaluating them at all - they will then tend to die out;

• "Lamark’s revenge" - one can define smart mutation and crossover operators

that are context-sensitive4 and never produce illegal members;

Which of these strategies is chosen depends on the representation. If there is a

natural way to exclude illegal members when mutating, the last method is prefer-

able. If not, the first is probably best.

4
�

i.e., they are not really random because they take the current genotype into account when changing it.

11

4) GA parameters: besides all of the parameters of the specific task, a GA has a

set of its own parameters, all of which can be tuned to achieve better performance.

The particular values are application specific (and thus are to be determined by

experiment), but some hints can be given. These parameters include:

• population size (P) - the bigger the population, the more chance of finding a

good solution. Population sizes are generally on the order of between 100 and

1000. Populations that are too small are likely to miss good solutions through

premature convergence on sub-optimal solutions, while ones which are too big

can waste time.

• survival size (S) - this determines what percent of the population survives at

each generation. Thirty percent is a decent number. If this value is made too

small, the population will quickly lose solutions which are not so great now,

but have a chance of being greatly improved, in favor of things which look

good now but may turn out to be dead ends. If the value is too large, the GA

will waste time on poor candidates.

• mutation rate (M) - this number determines the likely-hood of mutation in each

generation. A good general scheme is as follows: at each generation, after

evaluating all individuals, the next generation’s population is made up of: un-

altered copies of the best S individuals5, and as many mutated (M times each)

individuals as there are room for in P.

• crossover (C) - this number determines how many individuals out of the rest

described in the point above are not straight mutants but represent cross-overs

between two randomly-chosen individuals in the top S of the population. Us-

ing crossover generally leads to faster convergence. This may be a good thing

or a bad thing, depending on the task and how deceptive the landscape is.

5
�

This is called elitist selection, and ensures that the best individuals are never lost.

12

 In general, when one implements such an algorithm according to the flowchart

in figure 1, one should use a graphical package to plot (or at least record to a data

file for later study) several important characteristics of the evolution. These in-

clude the fitness of the top individual in the population, the average fitness, and

the population convergence (some measure of how similar the members of the

population are). These should usually be plotted as a function of generation num-

ber, though sometimes (for study as a time-series) these values are plotted against

their own values at the previous generation.

 These kinds of plots should be studied because they carry information showing

how fast better solutions are (or are not) being found, and when the evolution can

be stopped. The shape of the fitness curve is usually linear at first, and then exhib-

its gradual flattening, in a manner reminiscent of punctuated equilibrium (a sam-

ple plot appears as figure 2). It is also a good idea to implement some kind of

event handler which will save the current population to a disk file. This is because

it can be very frustrating to lose the results of a 12-hour evolution when some bug

in the program causes a crash.

 Several tricks exist for improving the performance of GAs. The details are

outside of the scope of this introductory paper, but they can be found in [3-8].

One standard approach is to reward parsimony along with performance. That is,

when calculating fitness, most of the value depends on how the member performs

as a solution to the problem, but some percentage of it is a function of how simple

the member is. For example, when evolving variable-length decision trees or ex-

pressions, it is often useful to reward parsimony, thus selecting for members

which are functionally the same but simpler in form (for example, preferring "3"

to "3 + 2*0"). This is beneficial both in terms of later use of the result discovered,

and time saved by not evaluating useless pieces of the members. This should be

used with caution, however, since often such seemingly useless sections can have

useful intron functions, by protecting critical pieces of code against cross-over,

and by serving as place-holders which are later replaced by useful code.

13

 Once a GA implementation is up and running, it is important to determine

how well it is working, and to adjust things if it is not working well. One of the

simplest analyses involves observing the top fitness vs. generation time plot. It

should rise rapidly at first. If it begins to level out (such that no significant pro-

gress in fitness is being made) while the quality of the best solution is really low,

then there is a problem. Often it is a bug in the code, although the reverse is not

true: fitness can often rise nicely even with significant bugs in the code, because

the opportunistic evolution will take advantage of mistakes in the fitness function,

and evolve things that were not intended to be selected for.

 If a bug in the code is suspected, one way to narrow down its location is to

replace the fitness function (and nothing else) with one which is known to be eas-

ily optimizable using GAs (such as a simple polynomial minimization problem or

something similar). If this works, it then follows that the GA engine itself is work-

ing, and the problem is either a bug in the fitness function itself, that the problem

is simply too difficult, or that a poor representation has been chosen. If it does not

work, one should strongly suspect the GA code itself, and to use some debugger

to make sure that mutations are being done properly, and that the top S% of the

population is really being carried over to the next generation. Other kinds of sta-

tistics (such as an averaged measure of how much mutated offspring differed from

their parents) etc. can be useful in narrowing down the bug.

 Before deciding that a problem is too difficult, it often pays to reconsider the

representation, and to think about other ways of representing the problem and

possible solutions. Perhaps there is a better way to produce a correlated landscape,

thus increasing the chances that a GA approach will work. One other reason for

premature flattening of the fitness curve is premature convergence on sub-optimal

solutions. This can be detected by computing and plotting a convergence meas-

ure6, and can sometimes be ameliorated by getting rid of cross-over (using muta-

6
�

This is a scalar number which is determined by how similar all of the genotypes in the population are.

14

tion only), and by using larger population sizes. Likewise, if the fitness is rising

too slowly, it may be worthwhile to experiment with GA parameters such as

population size and mutation rate. Finally, the problem may really be difficult,

and the only remedy may be patience (and a faster computer).

An Example: Antisense Therapy Advice Tool

 With those general principles in mind, it is now possible to turn to a sample

GA, applied to a real problem: the problem of designing antisense

oligonucleotides in antisense therapy7.

 Much research has shown ([9-10]) that introducing into cells oligonucleotides

whose sequence is complementary to the sequence of an expressed gene can often

greatly inhibit the presence of the protein. This can be (and is being) used as

antisense therapy, to knock out the function of certain genes of interest to the

biomedical community. The first step in this kind of approach is to design an oli-

gonucleotide which matches some part of the sequence of the gene of interest.

This choice is subject to a number of constraints:

• The oligo should be long, for maximal specificity and binding avidity, but if it

gets too long, cell uptake will not be good;

• The oligo should span a strategic point in the gene (the translation initiator re-

gion, a splice site, etc.);

• The oligo should have certain composition characteristics (for example, > 50%

GC-rich);

• The oligo should not have more than triplet repeats;

• The oligo should avoid other sequences which would result in unusual secon-

dary structure; etc.

7
�

This is a good example because it lends itself well to a GA approach; it is not meant to suggest that it is the only,
or even the best, way of dealing with this specific problem.

15

 A GA approach is a good idea for this kind of task8 because:

• time is not critical because the time to design an oligo is negligible compared

to the time that will be spent investigating its effects; also this is a procedure

that will only be done a few times at the most, not repeatedly;

• the problem has complex, interacting constraints, which are difficult for a hu-

man designer to take into account by inspection;

• the space of all possible oligos matching a given gene is very large (though for

smaller genes and fast CPUs, an exhaustive search just may be practical). For

example, considering 14-mer oligos somewhere along a gene 2 kb in size,

there are on the order of 1011 possible oligos.

• the fitness landscape is difficult (because even single base-pair substitutions

can introduce secondary structure and make a good oligo choice be unsuit-

able), but still correlated, because in general, single base-pair differences do

produce oligos that are similar in predicted quality.

 Thus, the first task it to choose an appropriate representation. Since any oligo

can be represented by an array of characters (A,C,G,T) of some length, the repre-

sentation will consist of a structure containing two elements: a variable-length

character array, and an integer expressing the starting position of the binding re-

gion on the target DNA. Since the representation involves simple linear arrays of

characters, this algorithm can be easily coded in C or C++.

 The fitness function will measure the predicted quality of any given oligo. In

this application, the function will rate the oligo on a number of criteria (such as

match to the target DNA, closeness of match region to some desired spot such as

a translational-initiation site, GC-richness, lack of base-pair repeats longer than

doublets, etc.). The oligo gets a score S on each of these characteristics, and the

fitness function returns a number 0.0 < F < 1.0, with F = S1·w1 + S2·w2 ... where

8
�

Though this is of course a "toy" problem, and is presented mainly for illustration.

16

the constants w1, w2, etc. represent the weights given to each criterion (that is,

match to target DNA sequence is probably more important than most of the other

characteristics, so that its value will be weighted more heavily in the definition of

the fitness function than the other criteria). Since the fitness function will involve

simple string matching and counting, and since the strings are short, this algo-

rithm can probably be efficiently run on a regular workstation, and supercomputer

resources will not be necessary.

 The algorithm would be coded exactly as shown in figure 1, and linked with a

simple graphical or data-plotting library; calls to this library will be used to dis-

play (as a function of generation number) the top fitness and average fitness of the

population, resulting in a plot like that of figure 2. The initialization step of the

program will involve reading the target DNA sequence from a file on disk.

 If one already has an oligo in mind, that oligo can be hand-inserted into the

initial population, in order to save time, and to optimize it further. This should

only be done, however, along with another purely random run, because having a

good oligo present from the beginning may cause it to dominate the evolution,

thus pushing out other solutions which may in time evolve to be even better.

Conclusion

 Genetic Algorithms have been shown to be effective on a variety of problems

resistant to analytical solutions and other search methods. Their straightforward

design, which is based on the evolutionary paradigm so familiar to biologists, and

their domain-independent nature, makes them a good choice for many types of

problems of interest to the biomedical community. A vigorous field of research is

currently growing around GAs, and it is expected that their utility to real-world

problems will increase greatly in the near future. However, I think the primary in-

terest of GAs, and other members of the field of Artificial Life, lies in their impli-

cations for the study of biological evolution and development. I encourage all in-

17

terested readers to scan the proceedings of the four Artificial Life conferences,

and some issues of the journal Evolutionary Computation. Your time will be am-

ply rewarded by new ideas and approaches to problem solving based on the bio-

logical realm.

18

Appendix

 Several important resources are available free to those who are implementing

GAs. These resources are internet-based9, and consist of repositories of ready-

made GA software and places where GA experts are available for advice.

1) Bibliographies: large bibliographies of GA and related literature can be ob-

tained by anonymous ftp at:

• host garbo.uwasa.fi, in directory /pc/research/2500GArefs.ps.gz

• host magenta.me.fau.edu, in directory /pub/ep-list/bib-EC-ref.ps.Z

to obtain these lists, one needs to FTP to the host mentioned (using "anonymous"

as the username, and an email address as the password), cd to the appropriate di-

rectory, get the file (in binary mode), and uncompress it before printing. Both are

in PostScript format.

2) Digests: mailing lists are maintained by people knowledgeable in GAs. By

sending email to the following addresses, including your question and a reply ad-

dress, it is possible to obtain answers to almost any GA-related problem.

• ga-list@aic.nrl.navy.mil

• alife@cognet.ucla.edu

• ep-list@magenta.me.fau.edu

• genetic-programming@cs.stanford.edu

• ga-molecule@tammy.harvard.edu

There is also the USENET group "comp.ai.genetic" which may be accessed by

various newsreader programs (such as "rn"). Posting to this newsgroup is another

way to get help with GAs.

9
�

And thus require access to the internet; in general, a book on basic internet use is also helpful.

19

3) Packages: a wide variety of packages (ready-made GA software which can be

supplemented with problem-specific routines) are available at no cost on various

FTP sites. A complete list (along with much other useful information) can be ob-

tained as the files in /pub/usenet/comp.ai.genetic/, on the host rtfm.mit.edu. A

small subset of these is:

• ESCaPaDe, for Unix systems, from

hoffmeister@ls11.informatik.uni-dortmund.de

• Genie, for MAC systems, from p_stampoul@fennel.cc.uwa.oz.au

• LibGA, for Unix, DOS, NeXT, and Amiga systems, from

corcoran@penguin.mcs.utulsa.edu

 Of course, a variety of commercial packages are available as well. In addition,

a good and freely-available graphical package, "pgplot", can be obtained by

anonymous FTP from deimos.caltech.edu. This package runs on a wide variety of

computers and allows easy plotting of population statistics on many kinds of out-

put devices.

4) Supercomputing resources: information about access to supercomputers (on a

competitive grant basis) can be obtained by sending email to remarks.psc.edu.

20

References

[1] Holland, J. H., Adaptation in Natural and Artificial Systems, Ann Arbor
MI: Univ of Michigan Press, 1975

[2] Kauffman, Stuart A., The Origins of Order, New York: Oxford Univ. Press,
1993

[3] Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine
Learning, MA: Addison-Wesley, 1989

[4] Davis, L., ed., Handbook of Genetic Algorithms, NY: Van Nostrand Reinhold,
1991

[5] Koza, J. R., Genetic Programming, MA: MIT Press, 1992

[6] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs,

NY: Springer-Verlag, 1992

[7] Fogel, L. J., A. J. Owens, and M. J. Walsh, Artificial Intelligence through

Simulated Evolution, NY: Wiley, 1966

[8] Mitchell, M., and S. Forrest, (1993), Genetic Algorithms and Artificial Life,

Artificial Life, 1(1): 267-289

[9] Erickson, Robert P., (1993), Focus on antisense approaches, Developmental

Genetics, 14(4): 251-257

[10] Crooke, Stanley T. ed., Antisense Research and Applications, Boca Raton:

CRC, 1993

21

Figure Legends

1) "Flowchart of a bare-bones genetic algorithm"

2) "A sample plot of fitness vs. generation in a GA"

22

Initialize a population of

random solutions

Determine the fitness of each solution

(this step is problem-specific)

Pick the top S% of the population
as determined by fitness

Replace the remainder of the population
with mutated forms of the top S%;

(optionally, perform cross-over)

Plot statistics such as convergence
and fitness of top individual

Start

 Is the fittest

 individual

acceptable?

Stop

Yes

No

Figure 1:

23

Figure 2:

Legend:

Top fitness

Convergence

Average member complexity

