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ABSTRACT A growing body of work sug-
gests that the activity of ion channels and pumps
is an important regulatory factor in embryonic
development. We are beginning to identify func-
tional roles for proteins suggested by a survey of
expression of ion channel and pump genes in
Xenopus and chick embryos (Rutenberg et al.
[2002] Dev Dyn 225, this issue). Here, we report
that the ATP-sensitive K� channel protein is
present in the hatching gland of Xenopus em-
bryos; moreover, we show that its activity is nec-
essary for hatching in Xenopus. Pharmacologic
inhibition of KATP channels not only specifically
prevents the hatching process but also greatly re-
duces the endogenous expression of Connexin-30
in the hatching gland. Based on recent work which
showed that gap-junctional communication medi-
ated by Cx30 in the hatching gland was required
for secretion of the hatching enzyme, we propose
that KATP channel activity is upstream of Cx30 ex-
pression and represents a necessary endogenous
step in the hatching of the Xenopus embryo.
© 2002 Wiley-Liss, Inc.
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INTRODUCTION

Electrical activity due to ion channel and pump func-
tion has been suggested to have a causal role in em-
bryonic development (Lund, 1947; Nuccitelli, 1988,
1992). Recently, we conducted a survey to determine
what electrogenic genes are expressed in early Xenopus
and chick embryos with an emphasis on possible non-
neuronal roles (Rutenberg et al., 2002). We are now
beginning to carry out functional analyses of several
such genes and here report the involvement of the KATP
channel in the hatching process in Xenopus.

The KATP ion channel protein is an octamer consist-
ing of four subunits of the K� rectifier (KIR6.1 or
KIR6.2) surrounded by four regulatory subunits. KATP
channels are found in the pancreatic � cells, cardiac
myocytes, pituitary, skeletal and smooth muscles,
brain, and kidney (Ashcroft, 1988). KATP channels cou-

ple cell metabolism with membrane electrical excitabil-
ity and are a key step in the control of glucose-induced
insulin release (Koster et al., 2000). KATP channels also
control membrane voltage; this is an important aspect
of neoplasm because of its ability to regulate prolifer-
ation, cell cycle control, and cell migration (Arcangeli et
al., 1996; Knutson et al., 1997; Kamleiter et al., 1998;
Wang et al., 1998; MacFarlane and Sontheimer, 2000;
Wohlrab et al., 2000). KATP channel subunits are often
misexpressed in tumor tissue (Zhu et al., 1998), and
drug-induced inhibition of tumor cell proliferation is, in
some contexts, due to the inhibition of KATP channel
activity (Woodfork et al., 1995; Wang et al., 1998; Won-
dergem et al., 1998). KATP channels are also believed to
be a key aspect of ischemic cardioprotection (Cohen et
al., 2000; Gomma et al., 2001). Because of their direct
involvement in mechanisms of diabetes, neoplasm, and
cardioprotection, KATP channels are an important bio-
medical target in adult tissue (Inagaki and Seino, 1998;
Day et al., 1999; Lawson, 2000). Interestingly, we de-
tected expression of KATP channels in early embryonic
cells not related to heart or pancreas (Rutenberg et al.,
2002), and investigated the novel embryonic role for
this ion channel family.

RESULTS AND DISCUSSION

Immunohistochemistry with an antibody against
Kir6.1, the main subunit of the KATP channel, reveals
the characteristic Y-shape staining on the embryo’s
face, indicative of the hatching gland (Fig. 1A,B). No
signal for Kir6.2 was detected (data not shown). We
then asked which of the two possible accessory sub-
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units (SUR1 and SUR2) might be expressed together
with Kir6.1. Immunohistochemistry with antibodies
against either subunit revealed that SUR1 was widely

expressed in the embryonic head, but specifically ab-
sent from the hatching gland (Fig. 1C). In contrast,
SUR2 was present in the hatching gland only (Fig. 1D).
These expression patterns suggest that the KATP chan-
nel present in the hatching gland is composed of
Kir6.1�SUR2, a combination that is believed to consti-
tute cardiac and vascular smooth muscle-type KATP
channels (Dorschner et al., 1999). Moreover, the com-
plementary expression of the regulatory subunits
SUR1 and SUR2 with respect to the hatching gland is
consistent with tight embryonic control over the pre-
cise functional properties of KATP channels located in
the head (Babenko et al., 1998; Inagaki and Seino,
1998).

To test which developmental events may depend on
the function of KATP channels, we used the pharmaco-
logic reagent Nicorandil (Kukovetz et al., 1992; Sato et
al., 2000), a powerful and specific drug that causes the
opening of KATP channels and hyperpolarizes cells that
express significant levels of this protein. Embryos cul-
tured in the presence of Nicorandil from stage 11 on-
ward developed normally but were unable to hatch
from the vitelline membrane. Compared with control
embryos at stage (st.) 39 (Fig. 1E, which were �95%
hatched by approximately st. 28, n � 52), Nicorandil-
exposed embryos were still in their vitelline mem-
branes (Fig. 1F, n � 48). When compared with a control
embryo (Fig. 1G), Nicorandil-exposed embryos that
were manually released from the vitelline membrane
show fairly complete development of the head, eyes,
and somites (Fig. 1H). Embryos freed at this stage were
alive and mobile, but the outer epidermis showed signs
of disintegration, possibly due to the increased pres-
sure against the vitelline membrane resulting from
confinement within the membrane at these late stages.
To confirm specificity of the Nicorandil exposure, we
performed several control experiments. Agonists of
other pathways (nitric oxide donors such as sodium ni-
troprusside, serotonergics such as RS67333, V-ATPase
blockers such as concanamycin, and V-ATPase activa-
tors such as fusicoccin) as well as vehicle (dimethyl

Fig. 1. KATP channels are involved in hatching gland function. A,B:
Immunohistochemistry using an antibody to Kir6.1 reveals the presence
of KATP channels in the Y-shaped tissue of the hatching gland. C: SUR1
protein is strongly expressed in the head but is strikingly absent from the
hatching gland cells, the cement gland, and the tissue between the two
frontal arms of the hatching gland Y shape. D: SUR2 is present in the
hatching gland. E: Control embryos hatch by stage 29. F: In contrast,
embryos exposed to Nicorandil, an opener of KATP channels, remain in
the vitelline membrane and are unable to hatch. G: Individual embryo
showing morphology at stage 38. H: Individual embryo manually freed
from the membrane shows normal development to this late stage, despite
confinement to the vitelline membrane. I: Connexin30 is normally strongly
expressed in the hatching gland. J: Embryos exposed to Nicorandil show
a much reduced expression of Cx30 in the same tissue (white arrow).
Compared with control embryos (K), the expression of the hatching
enzyme is equally strong in Nicorandil-exposed embryos (L), showing
that the tissue is alive and that the cells maintain hatching gland identity.
Red arrows indicate expression. Green arrows indicate lack of expres-
sion.
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sulfoxide [DMSO]) were without effect on hatching.
Moreover, blockers of other types of K� transporters
(Na�/K�-ATPase: ouabain, H�/K�-ATPase: lansopra-
zole, Na�/Cl-/K� cotransporter: bumetanide) had no
effect on hatching (not shown). We conclude that the
activity of KATP channels composed of Kir6.1 is likely to
play a role in the hatching process.

Release from the vitelline membrane occurs due to
the secretion of hatching enzyme XHE (Katagiri et al.,
1997) from the hatching gland on the face of the em-
bryo. To gain mechanistic insight into how the hatch-
ing process was dependent on the activity of K� chan-
nels, we examined the expression of mRNA markers
expressed in the hatching gland. Connexin30, a mem-
ber of the connexin family of genes that form gap junc-
tions, is expressed in the cells of the hatching gland in
Xenopus and is likely to be involved in the regulation of
hatching enzyme release from gland tissue (Levin and
Mercola, 2000). Control embryos showed strong expres-
sion of Cx30 in a Y-shape on the face of the embryo (Fig.
1I). In contrast, embryos exposed to Nicorandil, showed
a much-reduced expression of Cx30 (Fig. 1J, n � 20). To
ensure that this effect was not due to cell death in the
hatching gland or a respecification of identity in the
gland tissue, we examined the expression of the hatch-
ing enzyme gene itself (Katagiri et al., 1997). Control
embryos showed strong expression in the same charac-
teristic Y shape (Fig. 1K). Similarly, embryos exposed
to Nicorandil also showed strong expression of XHE
(Fig. 1L) identical to the controls, ruling out loss of
hatching gland cells and suggesting that the mecha-
nism of Nicorandil action is downstream of hatching
enzyme transcription.

In previous work, we presented data showing that
pharmacologic and genetic loss of gap-junctional com-
munication in the hatching gland inhibits hatching
(Levin and Mercola, 2000). Thus, a down-regulation of
endogenous Cx30 expression in hatching gland cells is
a likely mechanism by which opening of KATP channels
prevents hatching. Gating of mature gap-junctional
complexes by membrane voltage is a well-known phe-
nomenon (Revilla et al., 2000). Our data are consistent
with another level of control of gap-junctional commu-
nication by the activity of ion channels: transcription of
connexin genes. Gap junctions play a recognized role in
regulation of enzymatic secretion in several contexts
(Meda, 1996a, b). Thus, we propose a model (Fig. 2) in
which (1) KATP channels consisting of Kir6.1 and SUR2
determine membrane voltage in hatching gland cells,
which (2) permits the expression of Cx30 in the gland
tissue, which (3) enables XHE secretion by virtue of
gap-junctional synchronization of secretion signals.
Our data also suggest the investigation of gap junc-
tions as an intermediate step in the regulation of hor-
mone secretion by K� flux and KATP channels in other
contexts (Abraham et al., 1999; Seino et al., 2000). The
mechanisms by which membrane voltage is coupled to
Cx30 transcription is a key area for future investiga-
tion, because understanding how voltage can be trans-
duced to gene expression is likely to shed crucial light

on the mechanisms by which endogenous ion fluxes and
voltage gradients control morphogenetic events.

EXPERIMENTAL PROCEDURES
In Situ Hybridization

Before in situ hybridization, Xenopus embryos were
collected and fixed in MEMFA (Harland, 1991). All
embryos were washed in phosphate buffered saline
(PBS) � 0.1% Tween-20 and then transferred to meth-
anol through a 25%/50%/75% series. In situ hybridiza-
tion was performed according to a standard protocol
(Harland, 1991) by using chromogenic detection with

Fig. 2. A model of KATP channels’ involvement in hatching gland
function. KATP channels consisting of Kir6.1 and SUR2 determine mem-
brane voltage in hatching gland cells; this potential is transduced to the
transcription machinery (by unknown mechanisms) and permits the ex-
pression of Cx30 in gland tissue. Gap junctions are formed from connexin
proteins and result in a syncytium, which underlies the synchronization of
secretion signals. This process enables release of XHE by hatching gland
cells, leading to breakdown of the vitelline membrane.
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alkaline-phosphatase. Probes for in situ hybridization
were generated in vitro from linearized templates us-
ing digoxigenin-labeling mix from Roche. The Cx30
probe is described in (Levin and Mercola, 2000). The
XHE probe is described in (Katagiri et al., 1997).

Whole-Mount Immunohistochemistry

Embryos were fixed overnight in MEMFA and stored
at 4°C in PBTr (1� PBS � 0.1% Triton-100). They were
then washed 3� in PBTr, blocked with 10% goat serum,
and incubated with primary antibody at 1:500 in PBTr
overnight, washed 6� with PBTr, and incubated with an
alkaline-phosphatase secondary antibody overnight. Af-
ter six washes in PBTr, detection was carried out by
using nitro blue tetrazolium and 5-bromo-4-chloro-3-in-
doxyl phosphate (X-Phos). Antibodies against Kir6.1,
Kir6.2, SUR1, and SUR2 were a generous gift of Dr.
Blanche Swappach.

Nicorandil Exposure

Control embryos were exposed to the same level of
vehicle (DMSO) as exposed embryos. Nicorandil stocks
were made as 100 mg of Nicorandil in 11 ml of water �
1 ml of DMSO and used at 4.7 �M. Nicorandil was a
kind gift of Merck KgaA, Darmstadt, Germany. All
other drugs were obtained from Sigma and used at
standard concentrations.
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